

NTG-3000

Messumformer

Bedienungsanleitung

Dokument Version 2.12

Tel. 09129 / 2852-0

Fax: 09129 / 2852-11 Web: www.hsshsp.de EMAIL: HSP@hsshsp.de

Versionen / Änderungen :

Dokument Version	Erstellung	Bearbeiter	Beschreibung		
2.0	25.07.2012	P. Compensis	Erste offizielle Version		
2.1	17.09.2012	P. Compensis	Beschreibung für SW-Version 3.2		
2.2	16.10.2012	P. Compensis	Beschreibung für SW-Version 3.2		
			Unterscheidung zwischen Modus 2 und 2+		
2.3	22.02.2012	P. Compensis	Einpflegen der Änderungen der SW-Version 3.3:		
			Beschreibung der integrierten Filter		
2.4	07.03.2013	P. Compensis	Angabe der Software- und Hardware-Versionen		
			bei der Beschreibung der Gültigkeit des		
			Dokumentes.		
			Im Kapitel 7.3 "Messeingänge" wurde die		
			Begrenzung der Leitungslängen auf 30 m entfernt		
			und die Beschreibung zu den Anschlussleitungen		
			erweitert.		
			Ergänzung um Angaben zu den Filtertypen.		
			Ergänzung um grafische Darstellung des		
			Algorithmus der Filter 2. Ordnung.		
			Anpassung der Beschreibung der 3. Filterstufe.		
			Uberarbeitung der Anschlussskizze.		
2.5	16.05.2013	B. van Laak	Drehung des Gehäuses um 180°.		
2.6	11.09.2013	C. Aggou	Beschreibung des neu hinzugekommenen "Rate-of-		
		P. Compensis	Change-Filters"		
			Beschreibung der neu hinzugekommenen		
			erweiterten Spannungsphasenausfallerkennung		
2.7	25.11.2013	C. Aggou	Beschreibung der Filterung der Eingangsgrößen		
2.8	16.12.2013	P. Compensis	Verschiedene kleine Korrekturen		
		C. Aggou	Blockschaltbild des Tschebyscheff-Filters		
			eingefügt		
2.9	16.04.2014	P. Compensis	Neue Software-Version 3.7		
2.10	12.03.2015	M. Krönert	Neue Software-Version 3.8, Kapitel 16		
2.11	08.02.2016	P. Compensis	Grafische Darstellung des Algorithmus der		
			erweiterten Phasenausfallerkennung		
2.12	06.11.2018	M. Krönert	Kapitel 2: Software-Anpassung		
			Kapitel 7.2: Verweis auf aktuelles Datenblatt		

Inhaltsverzeichnis:

1	EINLEITUNG
2	GÜLTIGKEIT DES DOKUMENTES 4
3	TRANSPORT UND LAGERUNG
4	EINSATZUMGEBUNG
5	MONTAGEANWEISUNG5
6	ANSCHLUSS7
7	BESCHREIBUNG DER AUSFÜHRUNG DER ANSCHLÜSSE
8	KONFIGURATION9
9	LEDS 10
10	INBETRIEBNAHME 10
11	MESSWERTERFASSUNG 11
12	FILTER12
13	ALGORITHMEN 14
14	DATENÜBERTRAGUNG 15
15	FEHLERSIGNALISIERUNG 16
16	

1 Einleitung

Der Messumformer wird in Kraftwerken eingesetzt. Er ist dort Teil eines Regelkreises, welcher die Istwerte der Ströme und Spannungen eines Generators erfasst und an die Steuereinheit via Ethernet/PROFIBUS weitergibt.

Dieses Dokument beschreibt die Montage, den Anschluss und die Inbetriebnahme des Messumformers.

2 Gültigkeit des Dokumentes

Diese Bedienungsanleitung gilt nur für den Messumformer NTG-3000.

Software >= Version 3.9x Hardware Rev. 5.1

Weitere Informationen finden Sie im Datenblatt "NTG-3000-Datenblatt_V.2.10.doc".

3 Transport und Lagerung

3.1 Lagertemperatur

-20 °C bis +70 °C; maximale Änderung: 20 K/h IEC 60068-2-1 und IEC 60068-2-2

3.2 Mechanische Festigkeit

Stationär:	DIN IEC 60068-2-6 Auslenkung: Beschleunigung:	0,075mm (5 9Hz) 1 m/s ² (>9 200Hz)
Transport:	DIN IEC 60068-2-6 Auslenkung: Beschleunigung:	3,5mm (5 9Hz) 10 m/s ² (>9 500Hz)

4 Einsatzumgebung

Zweite Umgebung, gemäß EN 61800-3

5 Montageanweisung

Das Gerät ist für die Befestigung auf Hutschiene (DIN EN 60715 TH 35) vorgesehen. Eine andere Befestigung ist nicht zulässig.

Zulässige Einbaulage: horizontal

5.1 Montage

Zur Montage sind folgende Schritte durchzuführen:

5.2 Demontage

6 Anschluss

Ein Schutzleiter (PE) und die Spannungsversorgung müssen immer abgeschlossen werden (Klemme X100). Alle anderen Anschlüsse sind für den Betrieb optional.

6.1 Anschlussplan

7 Beschreibung der Ausführung der Anschlüsse

Tel. 09129 / 2852-0

7.1 Anschluss des Schutzleiters (PE)

Vor Inbetriebnahme des Gerätes ist eine Verbindung herzustellen von der Schutzleiterklemme X100/3 zum PE-Potential des Aufstellungsortes.

Als Leitung ist ein flexibles PE-Kabel (grün/gelb) mit einem Mindestquerschnitt von 1,5mm² vorzusehen. Sie sollte so kurz wie möglich ausgeführt werden (< 2m).

7.2 Spannungsversorgung anschließen

Der Anschluss der Versorgungsspannung erfolgt an den Klemmen X100/1 (+24V) und X100/2 (M). Die Leitungslänge muss dabei kleiner als 30m sein. Das Gerät hat keinen eigenen Netzschalter.

Die 24 V-DC Stromversorgung muss an die Eingangsdaten des Gerätes angepasst sein, siehe Datenblatt "NTG-3000-Datenblatt_V.2.10.doc".

7.3 Messeingänge

Die Leitungen zu den Messeingängen (Klemmleisten X500, X501, X502, X503, X600, X601, X602) sollten geschirmt und so kurz wie möglich ausgeführt werden (Leitungslängen > 100 m müssen im Einzelfall bzgl. der Messgenauigkeit geprüft werden). Parallel zu den Signalleitungen dürfen keine Leistungs-, Netzspannungs- sowie sonstige störbehaftete Leitungen verlegt sein. Dazu sind die gängigen EMV-Planungsregeln zu beachten.

7.4 Ethernet-Schnittstelle

Der Anschluss an ein Ethernet-Kabel erfolgt über eine 8P8C-Modularbuchse "RJ-45" (X200) nach folgender Spezifikation 100BASE-TX, IEEE 802.3 Clause 25.

7.5 PROFIBUS-Schnittstelle

Für den Anschluss an PROFIBUS verfügt der Messumformer über eine 9-polige Sub-D Buchse (X300).

NTG-3000 Bedienungsanleitung Version 2.12

8 Konfiguration

Vor der ersten Inbetriebnahme muss der Messumformer abhängig von den angeschlossenen Signalen (Klemmleisten X500 bis X503 und X600 bis X602) konfiguriert werden. Die Konfiguration erfolgt über den mit "*CONFIGURATION*" beschrifteten sechzehnstufigen Drehschalter.

Hinweis: Der Drehschalter wird nur während des Systemstarts ausgewertet (beim Anlegen der Versorgungsspannung). Änderungen der Einstellung des Drehschalters während des Betriebes können durchgeführt werden, haben aber bis zum nächsten Neustart keinen Einfluss auf das System.

8.1 Mögliche Schalterstellungen / Konfigurationen

	Ströme		DC-Si	ignale		Modus	3-phasig
							(I1, I2, I3)
Stellung	1 A	5 A	020mA	420mA			2-phasig (I1, I3)
0	Х		Х		2	(ohne Debug-Daten)	
1	Х			Х	2	(ohne Debug-Daten)	
2		Х	X		2	(ohne Debug-Daten)	
3		Х		Х	2	(ohne Debug-Daten)	
4	Х		Х		2+	(mit Debug-Daten)	
5	Х			Х	2+	(mit Debug-Daten)	3 phasia
6		Х	X		2+	(mit Debug-Daten)	5-phasig
7		Х		Х	2+	(mit Debug-Daten)	
8	Х		X		1		
9	Х			Х	1		
А		Х	X		1		
В		Х		Х	1		
С	X		X		2	(ohne Debug-Daten)	
D	Χ			X	2	(ohne Debug-Daten)	2 phasig
E		Χ	X		2	(ohne Debug-Daten)	2-phasig
F		Х		X	2	(ohne Debug-Daten)	

Die Auswahl des Modus erfolgt über den 16-stufigen Drehschalter:

9 LEDs

HSP GmbH Zum Handwerkerhof 2 90530 Wendelstein

LED	Beschreibung	Farbe	
POWER	leuchtet wenn die Betr	iebsspannung anliegt	grün
STATUS	Zur Anzeige des Betriebs und von Fehlern (siehe 15.1)		grün
ERROR	Zur Anzeige von Fehlerzuständen (siehe 15.1)		rot
Ethernet Link/Activity	leuchtet nicht kein Link		gelb
	leuchtet	Link	
	blinkt	Activity / Netzwerkverkehr	
Ethernet Speed	leuchtet nicht	10Base-T	grün
	leuchtet	100Base-TX	

Tel. 09129 / 2852-0

10 Inbetriebnahme

Vor der Inbetriebnahme muss das Gerät gemäß Kapitel 8 konfiguriert werden. Anschließend kann die Versorgungsspannung angelegt werden. Nach der Initialisierungsphase startet daraufhin automatisch die zyklische Messwerterfassung und bei einem bestehenden Ethernet-Link beginnt der Messumformer kontinuierlich die erfassten Messwerte an die fest programmierte Ziel-IP-Adresse zu senden (sieh Kapitel 14.1).

Zeitgleich können die Werte über die PROFIBUS-Schnittstelle abgefragt werden (siehe Kapitel 14.2).

11 Messwerterfassung

11.1Filterung der analogen Eingangsgrößen (U1-3 und I1-3)

Die analogen Eingangsgrößen (U1–3 und I1–3) werden in der Grundparametrierung standardmäßig gefiltert. Diese Filterung kann über das Options-Byte (siehe *NTG-3000 – Datenprotokoll*) deaktiviert werden.

Bei dem implementierten IIR-Filter handelt es sich um einen Tschebyscheff-Filter zweiten Grades mit den folgenden Koeffizienten:

11.2Abtastzeit der analogen Eingangsgrößen

Die Messwerte werden in den verschiedenen Modi unterschiedlich schnell eingelesen:

	Abta	strate
Modus 1	100 µs	2 ms
Modus 2	500 µs	2 ms
	U1	DC1
	U2	DC2
Vanal	U3	DC3
Kallal	I1	
	I2	
	I3	

Hinweis: Ist die Filterung der analogen Eingangsgrößen aktiv, so ist die erweiterte Phasenausfallerkennung (siehe 13.2) und der Rate-of-Change-Filter (siehe 13.3) inaktiv!

12 Filter

Für die gefilterte kompensierte Frequenz (f_{comp gefiltert}) und die gefilterte effektive Wirkleistung (Pgefiltert) sind im Messumformer NTG-3000 jeweils drei Filter 2. Ordnung integriert.

Der Aufbau dieser Filterstrukturen wird im Folgenden beschreiben:

12.1Aufbau der Filterstrukturen

* abhängig von den Filterparametern z. B. Butterworth (siehe Kapitel 12.3)

12.2 Algorithmus der Filter 2. Ordnung

 $y = b_2 \cdot x + b_1 \cdot x_{k-1} + b_0 \cdot x_{k-2} - a_1 \cdot y_{k-1} - a_0 \cdot y_{k-2}$

- Filter-Eingang Х
- Filter-Ausgang
- у Z⁻¹ Taktverzögerung
- um einen Takt verzögerter Wert des Filter-Eingangs X_{k-1}
- um zwei Takte verzögerter Wert des Filter-Eingangs X_{k-2}
- um einen Takt verzögerter Wert des Filter-Ausgangs y_{k-1}
- um zwei Takte verzögerter Wert des Filter-Ausgangs y_{k-2}

 $b_0...b_2$

a₀...a₁ Filterparameter

HSP GmbH Zum Handwerkerhof 2 90530 Wendelstein

12.3 Filter-Parameter der 1. und 2. Filterstufe

Die Parameter der 1. und 2. Filterstufe müssen über PROFIBUS parametriert werden (siehe Protokollbeschreibung, Kapitel "Einstellungen über PROFIBUS").

Tel. 09129 / 2852-0

12.4 Feste Filter-Parameter der 3. Filterstufe

Die festen Parameter für die 3. Filterstufe werden automatisch abhängig von dem Parameter f_0 (Nennfrequenz) umgeschaltet. Beide Parametersätze der 3. Filterstufe sind fester Bestandteil der Firmware des Messumformers und können nicht über PROFIBUS parametriert werden.

Die 3. Filterstufe (Kerbfilter) ist nur aktiviert, falls die Grundfrequenz f_0 mit 50Hz oder 60Hz parametriert ist. In anderen Fällen wird die 3. Filterstufe deaktiviert (Filter-Eingang = Filter-Ausgang).

12.4.1 Parameter bei $f_0 = 50$ Hz, Kerbfilter (3. Filterstufe)

$b_2 = 0.961738506$	$b_1 = -1.899795818$	$b_0 = b_2$
	$a_1 = -1.900784057$	$a_0 = 0.924465250$

12.4.2 Parameter bei $f_0 = 60$ Hz, Kerbfilter (3. Filterstufe)

b2 = 0.9543227349	$b_1 = -1.8748381111$	$b_0 = b_2$
	$a_1 = -1.8762498820$	$a_0 = 0.9100572407$

13 Algorithmen

Das *NTG-3000* besitzt verschiedenen Algorithmen, um Fehlerfälle abzufangen bzw. zu erkennen und anzuzeigen.

13.1 Einfache Phasenausfallerkennung

Die einfache Phasenausfallerkennung prüft jeden System-Takt, ob die Summe der Spannungsphasen einen Wert in einem bestimmten Bereich um die Null hat. Fallen **eine** oder **zwei** Phasen aus, wird dies durch eine Summe **außerhalb** des Bereiches um Null erkannt und über das Bit 1 im **Error-Byte** (siehe *NTG-3000 - Datenprotokoll*) über PROFIBUS und Ethernet angezeigt.

Nachteil dieser Phasenausfall-Analysemethode:

- Bei dreiphasigen Systemen muss zwingend der Nullleiter angeschlossen werden, da sonst der Algorithmus nicht greift
- Der Ausfall von drei Spannungsphasen wird nicht erkannt

13.2 Erweiterte Phasenausfallerkennung

Die erweiterte Phasenausfallerkennung vergleicht jeden System-Takt die Werte der einzelnen Phasen miteinander. Fallen **eine**, **zwei** oder alle **drei** Phasen aus, schlägt der Vergleich fehl und es wird über das Bit 2 im **Error-Byte** (*NTG-3000 - Datenprotokoll*) ein Fehler über PROFIBUS und Ethernet angezeigt.

Dabei arbeitet der Algorithmus wie auf dem Bild dargestellt.

Hinweis: Ist die Filterung der analogen Eingangsgrößen aktiv (siehe 11), so ist die erweiterte Phasenausfallerkennung inaktiv!

13.3 Rate-of-Change-Filter

Der *Rate-of-Change-Filter* verhindert, dass die berechnete kompensierte Frequenz $(f_{comp \ gefiltert})$ bei einem Phasenausfall einen Sprung macht, der aufgrund der Trägheit des Generators physikalisch gar nicht auftreten kann. Dabei begrenzt der Filter die Änderung der kompensierten Frequenz $(f_{comp \ gefiltert})$ auf einen Wert, der durch einen vorgegebenen Parameter (*Trägheit der Synchronmaschine H* siehe *NTG-3000 - Datenprotokoll*) berechnet wird.

Die Grenzen werden dabei folgendermaßen berechnet:

 $Max = (T_{cycle} * 1/H);$ wobei T_{cycle} die Perioden-Zeit angibt, mit der der Rate-of-Change-Filter-Algorithmus aufgerufen wird. Min = -Max

Die begrenzte kompensierte Frequenz ($f_{compbeta}$) wird im NTG-3000 gemäß folgender Formel berechnet:

 $f_{compbeta n} = limit_{min}^{max} (f_{comp gefiltert} - f_{compbeta n-1}) + f_{compbeta n-1}$

Hinweis: Ist die Filterung der analogen Eingangsgrößen aktiv (siehe 11), so ist der Rate-of-Change-Filter inaktiv!

14 Datenübertragung

14.1 Ethernet

Der Messumformer sendet zyklisch die ermittelten Messwerte aller Kanäle in einem UDP-Paket an die Ziel-IP-Address: **192.168.1.100**.

14.2 PROFIBUS

Die ermittelten Messwerte aller Kanäle werden auf Abfrage an den PROFIBUS-Master übermittelt.

14.3 Datenformat

Eine Beschreibung des Aufbaus der über Ethernet oder PROFIBUS übermittelten Daten findet sich im Dokument: "*MUF - Datenprotokoll"*.

15 Fehlersignalisierung

Die Darstellung von Fehlerzuständen erfolgt über die ERROR-LED. Zusätzlich werden die genauen Fehlertypen per Ethernet und PROFIBUS übertragen (siehe Dokument "*MUF - Datenprotokoll"*).

STATUS-LED	ERROR-LED	
(grün)	(rot)	
an	aus	Normaler Betrieb
1Hz	aus	Systemstart (Dauer ca. 2 Sekunden) oder während der
		Initialisierung einer Ethernet Verbindung
2Hz	5Hz	PROFIBUS-Fehler
5Hz	an	Unvorhergesehener, schwerer Programmfehler
aus	an	EEPROM-Fehler
an	an	Fehlerhafte Kalibrierungswerte
an	2Hz	Ungültige Stellung des Drehschalters = ungültige
		Konfiguration

15.1 Status- und Fehler-LED

1Hz: LED blinkt mit 1Hz 2Hz: LED blinkt mit 2Hz 5Hz: LED blinkt mit 5Hz

15.2 Maßnahmen zur Fehlerbeseitigung

Fehlerbild: Maßnahme:	Die Power-LED (siehe Kapitel 6.1) leuchtet nicht. Kontrollieren Sie die Versorgungsspannung (siehe Kapitel 7.2).
Fehlerbild: Maßnahme:	Die rote ERROR-LED ist nicht dauerhaft aus. Die ERROR-LED signalisiert unterschiedliche Fehler. Beachten Sie hierzu die Tabelle in Kapitel 15.1.
Fehlerbild: Maßnahme:	Die grüne STATUS-LED leuchtet nicht dauerhaft. Die STATUS-LED signalisiert unterschiedliche Betriebszustände. Beachten Sie hierzu die Tabelle in Kapitel 15.1.
Fehlerbild: Maßnahme:	Der Messumformer meldet "PROFIBUS-Fehler". Kontrollieren sie die PROFIBUS-Verbindung zwischen Messumformer und Master (siehe Kapitel 7.5). Starten sie den Messumformer und den Master neu (durch vorrübergehendes Unterbrechen der Versorgungsspannung, siehe Kapitel 7.2).

HSP GmbH Zum Handwerkerhof 2 90530 Wendelstein Tel. 09129 / 2852-0

Fax: 09129 / 2852-11	Web: www.hsshsp.de	EMAIL: HSP@hsshsp.de

Fehlerbild:	Der Messumformer meldet "Unvorhergesehener, schwerer Programmfehler".
Maßnahme:	Starten Sie den Messumformer durch vorrübergehendes Unterbrechen der Versorgungsspannung neu (siehe Kapitel 7.2).
Fehlerbild:	Die vom Messumformer gesendeten Daten entsprechen nicht den erwarteten oder der Messumformer meldet "Ungültige Stellung des Drehschalters =
Maßnahme:	Kontrollieren Sie die Stellung des Drehschalters (siehe Kapitel 8.1).
Fehlerbild: Maßnahme:	Vom Messumformer werden keine Daten via Ethernet empfangen. Überprüfen Sie die IP-Adresse des Empfängers (siehe Kapitel 14.1) und den Anschluss des Ethernet-Kabels (siehe Kapitel 7.4).
Fehlerbild:	Der PROFIBUS-Master kann keine Verbindung zum Messumformer herstellen.
Maßnahme:	Kontrollieren Sie die Slave-Adresse und die Auswahl der richtigen GSD-Datei (siehe Dokument " <i>MUF - Datenprotokoll"</i>).
Fehlerbild:	Der Messumformer meldet "EEPROM-Fehler" oder "Fehlerhafte Kalibrierungswerte".
Maßnahme:	Senden Sie das Gerät zurück zum Hersteller.

HSP GmbH Zum Handwerkerhof 2 90530 Wendelstein

Tel. 09129 / 2852-0 Fax: 09129

16 Änderungsübersicht

16.1 Version 3.7 auf Version 3.8

- Fehlerkorrektur in der erweiterten Phasenausfallerkennung
- Anpassung der Konfiguration des Ethernet-Bausteins für die Ansteuerung der GELB-LED aufgrund der Baustein-Änderung von KSZ8051MLL auf KSZ8081MLX.